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Abstract

The uSimX13 module for the iMetrica software is a graphical user-interfaced time series mod-

eling and simulation environment that features computational modeling routines from the X-

13ARIMA-SEATS (X-13A-S) software published by the US Census Bureau. The uSimX13

environment offers a unique time series modeling software with the primary goal of analyzing

economic time series data using the most commonly used features of X-13ARIMA-SEATS. The

environment provides a large array of classical and modern goodness-of-fit tests to assess dif-

ferent model fits of the data, many different graphical representations of the time series data,

adaptive time series decomposition capabilities, and much more all while being accessible to both

beginners in the field of econometrics wanting to visualize frequently used tools, and practition-

ers wanting to obtain forecasts, seasonal/trend adjustments, and/or test and apply regression

components to their data. This paper gives an in-depth overview of many of the modeling

features of the uSimX13 software environment.
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Disclaimer This paper is released to inform interested parties of ongoing research and to encour-
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1 Introduction

The iMetrica software project began in 2010 as a simple graphical user interface for the X-

13ARIMA-SEATS (X-13A-S) Fotran program developed at the US Census Bureau [33]. One of

the main motivations behind this endeavor was to allow easy access to performing the most used

X-13A-S computational routines with the simple click of a mouse or keyboard button, and being

able to visualize the results instantaneously. This initial program spawned into what is now called
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uSimX13 and is featured as one of the four model-based time series analysis modules of the entire

iMetrica software package. In this document, we reveal the inner workings of the uSimX13 module:

what it does, how it is organized and built, how to use it for analyzing time series, and how to use

it for simulation studies of classical and modern time series diagnostic tests.

We believe that this is the first software of its kind - being able to model and investigate the

dynamics of nonstationary time series data using diagnostics along with an array of real-time visual

tools, all through the simple control of a unique graphical user interface. With the primary goal

of analyzing economic time series data using X-13A-S and producing models, adjustments, and

forecasts instantaneously without the need of writing input files or any intricate knowledge of how

the time series methodologies work, the target audience of the uSimX13 package is primarily anyone

with the desire to learn and/or investigate the modeling and dynamics of nonstationary time series.

It is also quite useful for practitioners who wish to quickly test different model fits and adjustments

or obtain forecasts or seasonal/trend adjustments of their data without resorting to input/output

files. To test one’s model fits and adjustments, the environment provides not only a large array

of classical and modern goodness-of-fit (gof) signal extraction diagnostic tests to assess different

model fits of the data but also the associated graphics of the measures used in the computation of

the gof diagnostics to get a visual aid into how they are functioning.

With the most common objective of time series analysis, seasonal adjustment, and signal ex-

traction being to better understand the underlying evolution of the time series, this interactive

software offers an engaging and innovative approach to understanding these important computa-

tional tools of time series analysis. Some of the principle computational tools include seasonal

ARIMA (SARIMA) modeling, seasonal adjustment, regression component adjustment, and fore-

casting, all boasting a fast computational core for instantaneous results. As with all the other

iMetrica modules, the layout of the uSimX13 module user interface presents a very simple intuitive

design that allows users to see the results of their time series computations automatically. Once

parameter estimations have changed or model adjustments are made, the resulting signal extrac-

tions, forecasts, diagnostics, spectral domain functions are changed and/or computed autmatically

and plotted on one of the many plot canvas’.

What makes this time series modeling and simulation environment fast and robust is that most

of the computational core is written in Fortran and C with many of the time series subroutines

borrowed from the X-13A-S software package. In order to access many of the routines in the

X-13A-S Fortran software and to speed up the computational core, function wrappers have been

written for the important subroutines to handle data and parameter passing, all while avoiding

much of the file writing and unnecessary routine calling. However, we would like to stress that

the uSimX13 environment was not designed with the purpose of creating an alternative to the

X-13A-S software, but rather as a high-end user-interactive tool for time series modeling which

allows the user to actually visualize the effects of the modeling and simulation controls, as well as
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perform many of the most used features of the X-13A-S environment. However, many features in

the X-13A-S program are yet to be implemented in uSimX13, such as the X11 seasonal ajustment

method (SEATS is used as the method for seasonal adjustement, and signal extraction in general.

See Gomez and Maravall [14]).

The design of the software emphasizes an engaging interaction with the modeling and designing

of the SARIMA model specification so that the user has the ability to make slight adjustments to

model parameterizations, random seeds for simulations, number of observations, and other features

while at the same being able to visualize the effects of the adjustments right away. This provides

a unique interactive learning tool for newcomers to economic time series modeling.

Another feature of the uSimX13 module that is highly attractive to researchers in time series

analysis is the ability to perform Monte Carlo studies for time series diagnostics. Due to the

fast computational power of the module and easy data storing and plotting capabilities, Monte

Carlo simulation studies are fairly simple to carry out in uSimX13. As an alternative to using

X-13A-S for Monte Carlo studies where the program must store the precomputed simulation data

from an independent program in separate files which are then inputed into a spec file for the X-

13A-S program to read, the uSimX13 environment relies on the many data structures and storage

capacities in the Java Virtual Machine [21] to render Monte Carlo simulation studies fully interactive

with the iMetrica software environment, without resorting to output or reading input files.

In this paper, we discuss some aspects of the software from the X-13A-S modeling subrou-

tines featured in the uSimX13 computational engine to spectral domain tools, gof diagnostics, and

SARIMA and regressor modeling. Although many of the features of the uSimX13 GUI components

are rather primitive and self-explanatory, in section 4, we give examples of the modeling and simula-

tion capabilities helpful for both beginners of nonstationary time series modeling and practitioners

looking to seasonally adjust data or assess model fit using gof diagnostics and spectrum tools.

2 uSimX13 Design

Software such at MATLAB, R, and the Ox programming language [22] provide rich libraries for

statistical time series analysis using both objective-oriented high-end language and an array of

computational libraries for specializing in matrix computations. However, one typically needs to

write the programs in their native language and this can be a time wasting task for someone who

isn’t familiar with programming in general.

This software is fundamentally different however in that we have placed an emphasis on under-

standing time series modeling through a coupling of both visual tools and modeling diagnostics,

both of which are accessible automatically through interaction with the GUI. This includes a visual-

ization of outputs from many X-13A-S modeling and diagnostic procedures, with no input/output

files to store nor a knowledge of computer programming; all data and computational structures
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of interest is stored automatically and organized for automatic graphical output and diagnostic

checking. In this section we give an overview of the structure and design of the uSimX13 software

that helps achieve these fast results.

2.1 Overall Hierarchy

Since much of the computational effort in the environment is done in Fortran and C using shared

libraries, the time series computations are as fast as in the original X-13A-S Fortran code, but now

with the added benefit of seeing the modeling results change in real-time as parameters change

without additional script writing for each change in parameter made.

The overall design to the uSimX13 software takes a hierarchal approach in that most of the

computing is done in Fortran and C, with the data, parameter, and other controlled input and

output being handled by routines written in the Java programming language, with heavy emphasis

on the AWT/Swing libraries for handling the graphical user interface. We show in Figure 1 the

computational structure of the software.

Figure 1: The overall design layout of the uSimX13 environment. All elements of the program are

connected to a C program and input/output of time series data and parameters is handled through

the Java GUI program.

The central interface is a GUI built using the Java Swing libraries which handles all the param-

eter adjustment controls for all the features of uSimX13. Java routines then handles the changes

globally and passes the changes into wrappers written using the Java native interface library (jni)

for calling all the C functions. The C functions then do the intermediary work, calling the necessary

Fortran X-13A-S and C computational subroutines, and passing the computed data back into the

Java interface. With the object-oriented Java interacting and passing parameters into wrappers

for the X-13A-S calls, this hierarchical structure to the software allows for additional computa-
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tional time series methods written in either C or Fortran to be added with relative ease. Since

we expect many more features and improvements to be added in the near future to the uSimX13

software, careful consideration has been taken into account for the implementation and handling

the communication between the uSimX13 GUI and the actual computational core.

2.2 Breakdown of the Computational Components

The breakdown of the computational components for uSimX13 has been done as follows. One of

the main features of the environment is the ability to simulate time series data and employ all of the

numerical routines on the simulated data. In order to minimize the inter-language communication

effort between Java, C, and Fortran, the data simulation features have been written in the Java

environment for direct access to the GUI. The simulated data is stored using Java data structure

objects and passed into the C environment when needed. Spectral domain time series functions for

the modeled data and the signal extraction and gof diagnostic tools (see section 4.2) are computed

and sampled for plotting in a C library called libSARIMAmodel.a.

The ability to upload time series data from files is also possible. Using a file handling procedure

built in the Java Swing library, one or several time series data files can be read and stored in the

uSimX13 system. Details on formatting issues with the data files for uploading ones data is given

in section 3.1.

Once data is stored in the uSimX13 system, all modeling components of the software are acces-

sible and can be applied, visualized, adapted, and changed to fit the needs of the user. The three

major components of the uSimX13 modeling environment are as follows. We will give more detail

on each component later in the paper.

• X-13A-S modeling environment: The principal component of uSimX13 that features SARIMA

model parameter estimation (MLE), signal extraction, seasonal adjustment, regression com-

ponent extraction, forecasting, computation of both time and frequency domain gof diagnos-

tics, AIC, BIC, and other model comparison indicators, regressor identification, and more.

• SARIMA model simulation environment: The controls for simulating time series data fea-

tures the selection of SARIMA model orders for both nonseasonal and seasonal components.

The number of observations, random seed for generating the random innovation process, the

innovation variance of data generating process,

• Pseudo-model estimation: The ability to compute the pseudo-true models based on data

from a fixed SARIMA model. This interface explores alternative models to time series data

that is generated from a SARIMA model where the new parameters that are computed

satisfy a minimization of a certain function called the Kullback-Leibler distance function.
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These parameters are labeled pseudo-true and both the goodness-of-fit diagnostics and model

comparison statistics using X-13A-S are computed using these pseudo-true values.

In conjunction with the various computational time series tools comes the many visualization

tools to assist in analyzing the time series data. Both time and frequency domains are featured in

the software for plotting

• original raw data

• seasonal component

• trend component

• cyclical component

• irregular component

• seasonally adjusted

in the time domain and

• periodograms

• spectral densities

• signal extraction weighting functions

in the frequency domain.

We mention again that all plotting features are dynamic in that once model choice/parameter

choices are adjusted, new plots reflecting the modeling changes are automatically updated. We

will summarize in more detail each of these modeling components throughout the remainder of this

paper.

3 Outline of uSimX13 Module

In this section we give an overview of uSimX13 module interface and give a description of each of

the features and controls. Figure 2 gives an overview the interface in the most recent release of the

iMetrica software. Note that additional options and controls may have been made since the release

of this documentation. Below we describe each of the panels in further detail.

1. The Global menu for the uSimX13 module: Handles the ability to import, export, and save

different time series and signal extraction results.
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Figure 2: The overall layout of the uSimX13 main control interface.

2. Time series plots: Control which time series are plotted on the plot canvas. By default the

original time series is plotted. One can also plot (upon availability) the seasonally adjusted

series, forecasts for up to 24 steps-ahead, the trend, the seasonal component, and the regres-

sion adjusted series if a regression option is used. To plot any of these series, simply click in

the check box to activate the plot. Note that the seasonal component will be plotted such

that the first point in the series represents the first observation in the original series.

3. MLE and model comparison diagnostics panels: When the MLE panel is chosen, all diagnostics

and MLE values are computed and displayed relative to the model dimensions chosen using

the combo boxes in the “model” box.

4. Pseudo estimation panel: (shown in Figure 3) the signal extraction estimations and model

parameters are produced using the pseudo-true values, where the true (simulated or data

generating process) model can be selected using the combox boxes in the Model panel.

5. The Model panel: Model selection panel for choosing dimensions of the SARIMA model.

Note that the largest values currently available in the uSimX13 module for the model are

(2, 1, 2)1(1, 1, 1)12. For models with higher dimensions, one must use either the BayesCronos

[4] or StateSpace [5] modules which allow higher dimensions for the models. The regression
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components can also be selected in this panel. To check for and compute a regression compo-

nent, simply click the respective check box, then click the regression adjusted plot check box

(in panel 2) to see the resulting adjusted data.

6. Diagnostics panel: Displays the signal extraction gof diagnostics (see 4.2), and four different

information criteria (see 4.1). Changes in the model or regression components will reflect the

new diagnostics instantly making quick model comparisons between different models a trivial

task.

7. The Ljung-Box statistics panel: Features four different lags and prints the Ljung-Box statis-

tics after any model estimation procedure (see 4.1 for more information on the Ljung-Box

statistics).

8. The MLE panel box: The values of the model parameters are displayed when a model changes

or a regression component is computed. When any adjustments are made to model dimensions

or regression components added, the new MLE values are plotted instantaneously.

9. The spectral plot panel: Controls which spectral plots are to be plotted on the spectral canvas.

To activate these plots, the spectral canvas must be chosen (choose in 11). The choices are

(in clockwise order), periodogram In(ω), spectral density FW,ψ, spectral differencing operator

Dn, model spectral density times signal/model ratio FW,ψgψ, periodogram times signal/model

ratio Ingψ, signal/model ratio gψ.

10. The signal/noise decomposition selector: To select a certain signal, simply click on the desired

check box. The choice of the signal only has effect on the spectral plot of the gψ function which

is the signal/model ratio in the frequency domain. Once selected, the new decomposition is

reflected in the spectral canvas. It has no effect in the modeling or diagnostics procedures,

only displays the different spectral plots for learning and analyzing purposes.

11. Time/Frequency tabbed panels: Choose between the time domain and the spectral/frequency

domain. If the spectral domain is chosen, access to the different model decompositions and

the spectral plots are available. If the time domain is chosen, the six different time series

(original, seasonal, trend, forecasts, seasonal adjusted, and regression adjusted series) are

available for plotting.

In the Pseudo-Estimation panel, additional diagnostics are featured that take into account

two different models being compared. Figure 3 shows the panel and the features and diagnostics.

As mentioned before, in the Model panel, two models can now be chosen offering the ability to

compare models by assuming that the data is generated by a certain data generating process

(DGP). The Model panel features two models for which one can choose the model dimensions 1)
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The simulated (or DGP) model, and 2) the estimated model. For example, for any given time

series data, if one assumes that the data is generated by an Airline model, comparing other models

to the Airline model will produce diagnostics with the assumption that the data is generated from

this “true” model. The estimated parameters for the Estimated model are called the pseudo-true

model estimates and can be used for computing signal extraction efficacies and to be used in model

comparison. For more information on pseudo-true values, signal extraction efficacies, and their

applications, see section 4.2.2 for more details.

Figure 3: Pseudo-Estimation modeling panel in uSimX13. Offers the ability to compare models

by assuming that the data is generated by a certain data generating process (DGP). The Model

panel now features two different models to choose: 1) The simulated (or DGP) model, and 2) the

estimated model.

3.1 Data Import/Export

There are various ways of inputing data into the uSimX13 module. The first option is to begin

with the Data Control manager module. This module is the main data control hub for the iMetrica

software and serves to collect time series data from a multitude of sources and then gives the user

the ability to perform prior adjustments to the data such as scaling and log transformations. One

also has access to the multitude of simulation of time series options. For further information on the
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Data Control module and how to use it, please refer to [3]. Once data has been entered in the Data

Control module, one can easily export it to the uSimX13 module by clicking on the Data Control

main menu, and then clicking “Export to uSimX13”. Once the uSimX13 module panel has been

clicked, one will see the exported data already plotted in the plot canvas. Furthermore, the data

is automatically modeled with the given settings in the uSimX13 environment, thus access to the

trend, seasonal component, forecasts, are automatically available.

Of course, one has the option to import time series data directly into the uSimX13 module

bypassing the Data Control center. The uSimX13 module menu features two options for doing

this: by uploading a single time series data file, or by uploading a X-13A-S datameta file. To

upload a single data file, simply click Open File in the uSimX13 module. From here, a file open

dialog appears (see Figure 5). Data files are typically marked with an extension .dat, however,

any file type can be used as long as it adheres to the X-13ARIMA-SEATS data file format. This

file format is straightforwardly given by either one or two columns of time series data observations.

If two columns are given, the first column is assumed to be the date of the given observation in the

second column. This format is called the “datevalue” format in X-13A-S and more information can

be found on this format in Hood and Monsell [19]. To filter out any files that are not data files,

simply click Files of Type and select Data Files. Once the .dat file has been selected, the data files

are automatically loaded into the module environment.

A second method of importing data into the module uSimX13 is via the datameta file. A

datameta file is a text file that lists a sequence of time series data files. The datameta file typically

has the file extension .dta and once loaded, gives easy access to a large number of series to be

modeled in the uSimX13 environment. To load such a file, go to the uSimX13 menu (see Figure

6) and click Open MetaFile. This opens a file dialog box from which one can access the directory

storing the .dta file. To filter out any files that are not data or datameta files, simply click Files

of Type and select Data Files. Once the .dta file has been selected, the data files are automatically

loaded into the module environment. To toggle which series to model, simply go to the Observation

Panel in the Additional Panels menu and if successfully uploaded, the data files should be featured

in the Loaded Files scroll bar (see 4 in Figure 4. To change files, simply click the left or right button

of the scroll bar to access the different files uploaded. The file name will then appear in the text

box.

Once the data has been modeled, saving the different components to output files is an easy

task. For example, if seasonally adjusted data is to be exported to an output data file, simply go

the uSimX13 menu and place the mouse over the Save Series submenu (see Figure 6). This will

show a list of the different modeled components that one can save to an output file. To save the

series, simply select the desired series from the list (if the series component is currently plotted on

the canvas, it will become highlighted), and then click the left-mouse button. This will save the

data in column format in the current directory where the iMetrica java class is found. The file
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Figure 4: The additional panel featuring properties of the uSimX13 simulation data mode. The

scroll bar 4 contains the time series data files currently loaded into uSimX13. To change files,

simply click the left or right button of the scroll bar to access the different files uploaded. The file

name will then appear in the text box.

Figure 5: File Dialog box for opening .dat or .dta datameta file for opening a directory of time

series files. The File Dialog can filter out all files without these extensions for an easier file search.

name will be iMetrica-*.dat where the asterix is the series type. For example, in the seasonally

adjusted data case, this will be seasAdj. In the case of forecasted data, the forecasted.dat and

includes the original time series with the 24 additional forecasted values appended to the end, thus

it will be a file with N + 24 observations. Note however that the original dates of the time series,

if supplied, are no longer retained in the file. Efforts might be made in future versions of iMetrica

to include the original dates.

We also note that when another component series is saved, it replaces the older file with the

same name. So if multiple seasonally adjusted data files are to be saved, each one must be renamed

after each save before another one is stored.
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One can also save different information and diagnostics produced by uSimX13 by again clicking

on the uSimX13 menu and accessing the different Save menus. See Figure 7 for an example on

saving the signal extraction component polynomials that are computed by SEATS.

Figure 6: Menu for saving specific component series to an output file.

Figure 7: Menu for saving the canonical signal extraction polynomial coefficients produced by

SEATS.

Before concluding this section on data import/export, we note a few tips when loading data

into the uSimX13 environment. Firstly, when new data is imported into the environment, the

data is automatically modeled using the given settings in the modeling environment. To make

the adjustments between loading any data file smoother, we recommend that the default settings

in the modeling environment be used. This implies using an Airline model (setting p = 0, q =

1, P = 0, Q = 1) and no regression effects. Secondly, be sure that the data being uploaded into

the module is indeed data that would be appropriate for the X-13ARIMA-SEATS. Data that is

stationary and non-seasonal could create internal problems and eventually slow down the module

performance and the overall performance of the iMetrica software. For data that is nonseasonal,

stationary, heteroskedastic, or anything else not typically modeled in X-13ARIMA-SEATS, the user

is recommended to use any one of the other modules, depending on the goals and priorities of the

user.
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3.2 Simulation Environment

The uSimX13 module also provides an easy to use simulation environment for simulating time

series from a model of the form (p, 1, q)1(P, 1, Q)12 where p, q ≤ 2 and P,Q ≤ 1. The simulator in

uSimX13 is used primarily in the context of learning more about the dynamics of basic SARIMA

models, pseudo-true model estimation, spectral density functions, and diagnostics.

By default, when the iMetrica software is started and the uSimX13 module is selected, the

simulation environment is activated. To change the model dimensions of the data to be simulated,

simply use the combo boxes in the Model panel shown in 2 of Figure 2 to choose set a value

for p, q, P,Q, the nonseasonal and seasonal ARMA dimensions. Once the dimensions are set,

the Observation Panel is to be opened to select the parameters used for simulation. To open

the observation panel, go to to Extra Panels menu at the top of the iMetrica frame, and select

Observation Panel. This opens an additional dialog frame from which one can choose the different

parameters of the simulated data. Once a value has been adjusted, the new data is automatically

plotted and modeled. For example, to change the MA parameter, simply click on the scroll bar

next to θ1. The new value is reflected in the new data being plotted. To be sure, adjust the value

and one should see that the MLE values change as well. One can also scroll through different

random seeds that change the innovation sequence used in simulation, the number of observations,

the burn-in period of the simulation, and the lag structure for the diagnostics (typically lag 0,1,or

12 is used). Figure 4 shows this Observation Panel in greater detail.

4 uSimX13 Methods

The X-12-ARIMA seasonal adjustment program is an enhanced version of the X-11 Variant of

the Census Method II seasonal adjustment program. The X-13A-S program is an enhancement of

the X-12-ARIMA program to include the signal extraction for ARIMA time series program SEATS

designed by Maravall and Gomez at the Bank of Spain (see [14] for more information on the SEATS

program). One of the main advantages of this fusion effort was to provide an even more versatile

approach to modeling seasonal (or nonseasonal) time series using both an array of deterministic

components to capture outliers, calender effects, and other regression effects and a variety of simple

stochastic models to capture other structural components of the series, such as seasonality, trends,

and cycles. uSimX13 provides access to many of the important methods in X-13A-S and in this

section we summarize some of the features. Of course, for more information pertaining to each

individual method, we recommend the literature mentioned at the conclusion of each subsection.

Much of the SEATS functionality in the uSimX13 module comes from the unobserved compo-

nent canonical decomposition capabilities. For example, the uSimX13 program produces seasonal

adjustments that are based on the output of the seasonal component that is produced in the SEATS
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signal extraction estimation routines. The functionality borrowed from X-12-ARIMA comes from

the regARIMA routine that simultaneously estimates an ARIMA model (whether with fixed di-

mensions or using automdl and computes any regression components (if any).

As mentioned in the introduction, a substantial effort in creating the uSimX13 environment was

aimed at providing not only robust and state-of-the-art time series computational tools, but also to

provide them in a computationally fast manner. Utilizing the construction of wrappers in Fortran

and C, the X-13A-S subroutines used in uSimX13 have been streamlined by avoiding unnecessary

calls to file writers and readers, while trying to reduce the amount of parameters in the X-13A-S

function calls. This ultimately speeds up the necessary function calls and nested function calls.

For example, we show in Figure 4 the network of function and subroutine dependencies within

X-13A-S. The arrows show the direction in which a function calls another function. In this case,

the rgarima.f function of X-13A-S computes the regression and ARIMA model parameters for a

given data set and user inputs.

rgarma_

amdfct_

arima_automx_

idotlr_

automd_

amdid2_ amdid_

chkchi_

chkmu_

easaic_

iddiff_

lomaic_

pass2_

tdaic_

trnaic_

tstmd1_

usraic_

x11ari_ revdrv_ x12run_

sspdrv_

MAIN__ x12a_

amidot_

x11mdl_

x11pt2_

xrgdrv_

Figure 8: The network of function and subroutine dependencies within X-13A-S when calling the

rgarima.f function used for model estimation. The arrows show the direction in which a function

calls another function.

However, as one can clearly see, in order to get to this function, a link to many different function

calls must be executed prior to any model estimation rendering many computational inefficiencies

in X-12. In uSimX13, we attempt to bypass much of the function linkage to rgarima.f and simply

access the numerical algorithms of the estimate routines more directly through the use of function

and subroutine wrappers.

We first look at the general model and estimation component borrowed from the X-12-ARIMA

and SEATS libraries.
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4.1 Features from X-13A-S: General Model and Estimation

The uSimX13 environment centers around modeling seasonal (or nonseasonal) nonstationary time

series using seasonal ARIMA (or SARIMA) models. As discussed by Box and Jenkins [7], ARIMA

models are frequently used for seasonal time series and generally, considerably easy to estimate using

both standard maximum likelihood techniques being used by X-13A-S or Bayesian techniques (we

only discuss the former in this paper). A general multiplicative seasonal ARIMA model for a time

series of monthly data Yt can be written, after suitable Box-Cox transformations, as the following:

φ(B)Φ(B12)(1−B)d(1−B12)DYt = θ(B)Θ(B12)ǫYt , t = 1, 2, . . . , N (1)

where φ(z),Φ(z12), θ(z), and Θ(z12) are polynomials of degree p, P, q,Q respectively, with roots

outside the unit circle of the complex plane, ensuring an invertible representation for the differenced

data. The ǫYt is a white noise innovation sequence (we emphasize the superscript Y since we will

have other innovation sequences for different processes). Here, B is the standard backshift operator,

namely BYt = Yt−1. We note that we allow for d nonseasonal differences and D seasonal differences,

however the uSimx-13 signal extraction program routines currently work only for d,D ≤ 1, but

not both zero). We will typically denote this model as a SARIMA (p, d, q)(P,D,Q)12 model. We

assume that Yt can be rendered stationary by the differencing operator δ(B) ≡ (1−B)d(1−B12)D,

thus giving stationary data Wt = δ(B)Yt. We will let W = {W1,W2, . . . ,Wn}′ denote the available

differenced data throughout the remainder of the paper.

One can choose an ARIMA model for the given data using the Model panel, or allow uSimX13

to automatically choose a model using the X-13A-S function automdl, a specification native to

X-13A-S (see [33]). For automatic identification of the model, X-13A-S determines the orders for

the SARIMA model (called ARIMA model identification) by following well-established procedures

that rely on examination of AICs, the sample autocorrelation function (ACF) and sample partial

autocorrelation function (PACF) of the time series Yt and its differenced data Wt. It is based

on the procedure in the TRAMO-SEATS time series modeling program developed by Gomez and

Maravall (see [14], [15], and [16]) but contains modifications to make use of the native X-13A-

S model estimation procedure, transformation and outlier identification procedures, and model

diagnostics.

Once the order of the model has been determined, uSimX13 calls the estimate procedure

in the rgarima.f that estimates the model parameters by exact maximum likelihood, or by a

variant known as conditional maximum likelihood (Box and Jenkins [7]), which is sometimes called

conditional least squares. The default in uSimX13 is the exact maximum likelihood approach for

both the AR and MA parameters. The resulting log-likelihood for an ARIMA model is reduced to

a sum of squares function minimized in a nonlinear least squares routine provided by MINPACK

discussed by More, Garbow, and Hillstrom [13].
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In the case that both ARIMA model and regression components have been specified in theModel

panel (also known as a regARIMA model), the approach to maximize the likelihood uses an iterative

generalized least squares (IGLS) algorithm of Otto, Bell, and Burman [30]. This algorithm involves

two general steps that for any given values of the AR and MA parameters, the regression parameters

that maximize the likelihood are obtained by a generalized least squares (GLS) regression. Then,

for given regression parameters, the ARIMA model is then computed by maximum likelihood to

the time series of regression

errors. IGLS iterates between these two general steps until convergence is achieved.

Once the regARIMA model has been computed, one can visualize the effects of the regression

component by plotting both the original data and the regression adjusted data in the plotting

canvas (see 2 in Figure 2).

4.1.1 Information Criterion

The uSimX13 program provides the following model selection information criteria each time model

estimation of time series data is performed: AIC (Akaike [1], see also Findley [10]), AICC (Hurvich

and Tsai [20]), a criterion due to Hannan and Quinn [17], and BIC (Schwarz [31]). These numbers

draw useful information during the course of model comparison and are used in the model estimation

stage for user inputed data. Suppose the number of estimated parameters in the model, including

the variance of the innovation process ǫYt is nr and that N is the length of the data after applying

the differencing operators. Denote LN the estimated maximum value of the exact log likelihood

function of the model for the untransformed data, then the formulas for these criteria are:

AICN = −2LN + 2nr, AICCN = −2LN + 2nr(1−
nr + 1

N
)−1

HQN = −2LN + 2nr log logN, BICN = −2LN + 2nr logN

(2)

Between any two models, Akaike’s Minimum AIC criterion states that the model with the

smaller AIC is preferred. Similarly, for each of the other model selection criteria above, the model

with the smaller value is preferred. The reader is referred to Findley [10] for uses and limitations

of the information criterion.

4.1.2 Ljung-Box Test

The Ljung-Box test [23] is a classical gof diagnostic commonly used in modeling ARIMA models.

It can be defined by the following hypothesis test:

• H0: The data is random, any observed correlations in the data result from randomness of the

sampling process of the data.
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• Ha: The data is not random.

The test statistic is given by

Q = n (n+ 2)
h∑

k=1

ρ̂2k
n− k

(3)

where n is the sample size, ρ̂k is the sample autocorrelation at lag k of the residual between the

model and data, and h is the number of lags being tested. For significance level α, the critical

region for rejection of the hypothesis of randomness is Q > χ2
1−α,h, with the right hand side of the

inequality the α-quantile of the chi-square distribution with h degrees of freedom.

So if the model is correct, the Ljung-Box Q-statistics are asymptotically distributed as χ2 with

degrees of freedom equal to the number of lags used in computing them less the number of AR and

MA parameters estimated. The p-values of the Ljung-Box statistic approximate the probability

of observing a Q-value at least this large when the model fitted is correct. When the degrees of

freedom is positive, small values of p, customarily those below 0.05, indicate model inadequacy.

In the uSimX13 program, the Ljung-Box Q-statistic p-value for a given estimated model and

data can be computed at any lag up to 24 using a scroll bar to adjust the k value indicating the

lag. In many cases, the Q-statistic can provide very good results at lags 12 and 24 for seasonal

data. However, it is often documented in the literature that this standard gof test fails to capture

model misspecification pertinent to the task of seasonal adjustment. In the next section, we discuss

a new genre of gof signal extraction diagnostics available in uSimX13 that were recently shown to

yield better results for model misspecification.

4.1.3 Forecasts

For a given SARIMA model with parameters estimated by the rgarima.f subroutine of X-13A-

S, forecasting the data up to 24 steps-ahead can be computed using the estimated model. The

point forecasts are minimum mean squared error (MMSE) linear predictions of future Yt values

based on the present and past Yt assuming that the specified ARIMA orders are correct, and that

the parameter values used are equal to the true values. These are standard assumptions, though

obviously unrealistic in practical applications.

4.1.4 SARIMA Model Dynamics

An innovative feature of the uSimX13 program that takes advantage of the computational efficiency

offered by the optimization of the X-13A-S subroutine calling described earlier is the ability to

understand better the dynamics of SARIMA models and the estimation of their parameters using

Maximum Likelihood Estimation procedures. In this subsection, we explore the mechanisms of this

uSimX13 feature and discuss how it can be used to learn and gain insight into SARIMA modeling

for nonstationary time series.
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The main engine of uSimX13 is the ability to efficiently simulate data from SARIMA models and

component models. Consider simulating data from a (p, 1, q)(P, 1, Q)12 SARIMA model as follows.

Let p, q ≤ 3, P,Q ≤ 1, and σ2 > 0 and let (Y0, Y1, . . . , Yk) be k arbitrary initial values where k =

p+12P+q+12Q+13. If φ = (φ̃1, . . . , φ̃p+12·P+13) and θ = (θ̃1, θ̃2, . . . , θ̃q−12·Q) are the coefficients of

the polynomials φ̃(z) = φ(z)Φ(z)(1−z)(1−z12) and θ̃(z) = θ(z)Θ(z) from a given SARIMA model,

then we can easily simulate a series Yt for t = 0, . . . , N from the (p, 1, q)(P, 1, Q)12 by first simulating

the white noise process ǫYt ∼ N(0, σ2) for t = 0, . . . , q + 12Q+N +NB. Here, the integer NB is a

so-called burn-in length for the simulation process, with the burn-in period allowing the effects of

the SARIMA parameters to fully be captured in the simulated data. With the sample white noise

process computed, the value of the data Yt = φ · (Yt−1, . . . , Yt−p+12P+13)+ θ · (ǫYt , . . . , ǫYt−q+12·Q) for

p + 12P + 13 ≤ t ≤ q + 12 · Q + N + NB, where · represents the dot product of the two vectors.

Once all values of Yt have been computed, the final N values of the data are taken to represent the

simulated of the SARIMA process. The default value for the burn-in period is NB = 100 and the

default initial values for (Y0, . . . , Yk) are zero. One can toggle the value of NB, however, we have

found through size and power Monte Carlo studies of the simulated data estimated parameters that

the initial values have little or no effect on the quality of the simulated data given a reasonable

burn-in period, so we have left these values at zero in the uSimX13 program.

Parameter changes can be made to the SARIMA model by use of scrollbars indicating the

parameter values. Once a parameter has been adjusted, the SARIMA model simulated data is

instantly replotted in the time domain plot box. For a fixed N , NB and a fixed random seed for

the random number generator, small changes in a parameter are reflected automatically in the

simulated data and small adjustments can be seen in the trend, seasonality, or white noise variance

depending on which parameter has been adjusted. Furthermore, the effects of adding additional

AR or MA parameters to the data can be visualized creating a unique environment to learning

about how the SARIMA model parameters influence the dynamic structure of the modeled time

series. Other factors available for adjusting the model or changing the simulated data include the

number of observations N , the burn-in period NB, and the random seed for the innovation process.

Figure 4.1.4 shows the control panel for the SARIMA model parameters that control the exact

values for the simulated data.

When adjustments in the SARIMA model are toggled, the uSimX13 program has the ability to

also compute the MLE estimation of the data, AIC and other information criterion statistics, the

Ljung-Box Q-statistic, and the gof signal extraction diagnostics described in the next subsection.

This provides a practical approach to understanding how diagnostics change when small changes in

the data occur. Other data of interest capable of being computed and plotted on the time domain

plot box as small adjustments are made to the model are a forecast with up to 24 steps-ahead

and the seasonal and trend components from the signal extraction procedure. On the spectral

domain, spectral density functions of the associated data model, signal, and noise components can
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Figure 9: Once changes to one of the values has been made, the data is re-plotted keeping all

other parameters, including the random number generator seed, fixed. This way, one is able to see

how the dynamics of the underlying SARIMA model fluctuate according to small changes in the

parameters.

be visualized as well.

4.1.5 Regression Components

A useful feature of the uSimX13 module is being able to easily test for and remove elements of the

time series that cannot be modeled by a stochastic model component, such as outlier effects and

calendar effects such as trading day and holiday effects. Calendar effects are quite often seen in

monthly economic data and are produced by changing calendar effects such as days of week in a

particular month or a moving holiday such as Easter or Thanksgiving. These features are modeled

by using regression effects that are defined by a vector of coefficients β ∈ R
m that is computed in

the estimation process, and a matrix xi,t of the regression variables defined by the i-th component

at time t < T .

As mentioned before, models which feature both the SARIMA model and a regression compo-

nent are called regARIMAmodels and their specification requires specification of both the regression

variables (the xi,t’s and a model for the error zt := yt − βxi,t. The former is done by using one

of the four available regression options in the Model panel (see 2 in Figure 2) and the SARIMA

model is specified using the model dimension combo boxes also in the Model panel. Choosing which

regression variables to include requires user knowledge relevant to the time series being modeled.

Several regression variables that are frequently used in modeling seasonal economic time series are

built in the uSimX13 module and include the following.

• Box-Cox transform: Although not a regression variable, it is however important in transform-

ing data that grows exponentially as time increases, into a more “linear” process.

• Trading day regressor: Trading-day effects occur when a series is affected by the differing day-

of-the-week compositions of the same calendar month in different years. Trading-day effects

can be modeled with 7 variables that represent a specific number of days (no. of Mondays), .

. . , (no. of Sundays) in a month t. . Bell and Hillmer [2] propose a better parameterization

of the same effects that use 6 contrast variables defined as (no. of Mondays)-(no. of Sundays),
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. . . , (no. of Saturdays) - (no. of Sundays), along with a seventh variable for length of

month. See [33] Section 4.3 for more information on it’s computation.

• Outlier effects: The outlier regressor is a quite versatile option which checks for and computes

three different types of outliers in the data. Namely, Additive Outlier (AO), Level Shifts

(LS), and Temporary Changes. AOs affect only one observation in the time series whereas

LSs increase or decrease all observations from a certain time point onward by some constant

amount. TCs allow for an abrupt increase or decrease in the level of the series that returns

to its previous level exponentially rapidly.

• Easter day regressors: Holiday effects (in a monthly flow series) arise from holidays whose

dates vary over time. They are significant enough if the activity measured by the series

regularly increases or decreases around the date of the holiday and if this differentially affects

two (or more) months depending on the date the holiday occurs each year. Easter effects

are the most frequently found holiday effects in U.S. economic time series, since the date of

Easter Sunday varies between March 22 and April 25. The Easter effect assumes that the

level of activity changes on the w-th day before the holiday for a specified w, and remains

at the new level until the day before the holiday. In uSimX13, one can compute the Easter

regressor effect by clicking the Easter regressor box featured in the Model panel and then

choose w in the combo box.

More regression options, such as other holiday regressors, are continuously being added in

uSimX13 and will be available in future distributions of the iMetrica software. This includes a date

defined ramp regressor which model sudden or monotonic jumps in the level of the data.

A nice feature of the uSimX13 model is that not only are the regression components computed

automatically when the respective regression component box is checked, but one can visually check

for the significance of a specific outlier simply by toggling on/off the given effect using the check

box. In the time series plots box, make sure that both the original time series and regression

adjusted time series plots are both selected. When all regression components are checked off, the

plot of the regression adjusted data will be the same as the original series. When a regression

component is selected, on can immediately tell if it was significant by the plot color differences: if

the regression component was significant, there will be a visual significant difference in the plots.

One can then play around with different model dimensions and compare information criteria and

signal extraction gof diagnostics to find the best model combination for the data at hand.

4.2 Additional Features: Signal Extraction and GOF Diagnostics

Model-based signal extraction comprises a large role in the uSimX13 software and is handled

through subroutines of SEATS and a C library. Since it forms the basis for the goodness-of-fit
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diagnostics that will be discussed later, we give a brief summary of the definitions and terminology

typically used in signal extraction theory and practice and what takes place during the extraction

process after SARIMA model estimation process of section 4.1 has taken place.

We begin by first giving a few definitions. Consider a stationary series {Wt}. The periodogram
of {Wt} is defined by

I(λ) =
1

n

∣∣∣
n∑

t=1

Wte
−itλ

∣∣∣
2

=
n−1∑

h=1−n

R(h)e−ihλ, λ ∈ [−π, π],

where R(h) is the sample autocovariance function and i =
√
−1. Furthermore, we can define the

spectral density fW as

fW (λ) =
∞∑

h=−∞

γfW (h)e−ihλ

so long as the autocovariance function (ACF) γfW (h) is square summable. For any bounded positive

symmetric function g(λ), we define its inverse Fourier Transform by

γg(h) =
1

2π

∫ π

−π

g(λ)eihλdλ, h = 0,±1,±2, . . .

With these definitions, we can now layout the signal extraction methodology used in uSimX13.

The first assumption is to assume that the nonstationary time series Yt can be decomposed into

a possibly nonstationary signal component Gt, the signal of interest, and a possibly nonstationary

noise component Nt, all other components grouped together, such that Yt = Gt + Nt. With this

decomposition, our second assumption is that the differencing polynomial δ(z) ≡ (1−B)d(1−B12)D,

can be factored into polynomials δG(z) and δN (z) which share no common zeros and such that

Ut = δS(B)Gt and Vt = δN (B)Nt are now mean zero stationary signal and noise components that

are uncorrelated with one another. It follows now that since Yt = Gt+Nt, we have thatWt = Ut+Vt

is stationary.

The next step is to first identify a SARIMA model 1 for the data Yt. (In the next section

we give an outline of how to do this in an efficient manner in uSimX13 based on Likelihood

information criterion such as the AIC). Once model identification has been accomplished, the

Maximum Likelihood Estimation procedure is then used to compute the seasonal and nonseasonal

AR and MA parameters. Going back to the definition of the spectral density for Wt, clearly there

is a one-to-one mapping from the space of parameters of the SARIMA model for Yt to the spectral

density function fW . Thus we can suppose that fW belongs to a family of spectral densities that is

parametrized by a vector ψ = (ψ1, ψ2, · · · , ψr)′, where ψ1, . . . , ψr−1 are the AR and MA parameters

and ψr is the innovation variance σ2 for the white noise process ǫYt .

Once the SARIMA 1 has been identified and estimated, the next step in signal extraction begins

by specifying models for each of the signal and noise components. We will follow the canonical

decomposition approach of Hillmer and Tiao [18], since this approach is the one used in SEATS.
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The assumed component models for the signal component Gt can be given by a seasonal, trend, or

irregular component or a combination of any two. These components are defined as

Φ(B12)U(B)DSt = θS(B)ǫSt

φ(B)(1−B)d+DTt = θT (B)ǫTt

φI(B)It = θI(B)ǫIt ,

(4)

where the various MA polynomials θ·(z) are chosen to guarantee invertible representation and the

ǫ·t innovation sequences are independent white noise. The polynomial U(z) = 1+ z+ z2 + · · ·+ z11

achieves seasonal differencing and satisfies 1− z12 = U(z)(1− z). The irregular component It is a

quite versatile component and in SEATS parlance is labeled a transitory component. In most cases,

the irregular component will simply be assumed a white noise process, thus φI(z) = θI(z) ≡ 1.

However, depending on the location of the roots for the AR and MA components of the fitted

SARIMA process, SEATS occasionally will attempt to model a cyclical-trend component, which in

effect defines θI(z) to be a polynomial of degree 3.

The estimation of the parameters for the MA polynomials θ·(z) and the innovation variance ǫ2
·

is accomplished in a SEATS subroutine called spectrum.f that computes a partial fraction decom-

position and outputs the polynomial coefficients of the MA polynomials. The reader is referred to

the original paper by Hillmer and Tiao [18] for a detailed description of the approach. Here we

outline an example to highlight the total procedure from estimation to signal-noise decomposition.

4.2.1 Example

Consider a SARIMA (0, 1, 1)1(0, 1, 1)12 model that, after seasonal and nonseasonal differencing with

δ(B), can be decomposed into a signal component Gt given by the sum of trend and irregular. Since

δ(B) = (1 − B)(1 − B)12 = U(B)(1 − B)2 and since It is stationary, we associate the differencing

(1− B)2 with the signal Tt + It to reduce it to stationary, which then gives Ut = Zt + (1−B)2It.

Here Zt = (1−B)2Tt is stationary, and actually follows an MA(2) model. Denoting this MA(2)

polynomial by ξ(z) = 1+ ρ1z + ρ2z
2, it then follows that we can then write the spectral density of

the process Ut as

fU (λ) = |ξ(z)|2ρ3 + |1− z|4ρ4,

where ρ3 and ρ4 are the innovation variances of the trend and irregular processes.

The noise component will then be given by a seasonal component, and therefore the noise

differencing operator is δN (z) = 1+z+z2+ · · ·+z11 resulting in the MA(11) process Vt = δN (B)Gt

for the noise component. Now since Wt = δN (B)Ut + δN (B)Vt, we have

fW (λ) = |δN (e−iλ)|2fU (λ) + |δS(e−iλ)|2fV (λ). (5)

With the spectral density ofWt, it is clear that the parameters of fU and fV are direct functions

of ψ, and are referred to as ρ = ρ(ψ) and τ = τ(ψ) respectively. Note that ρ and τ typically have
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different dimensions from ψ. We will write the spectral densities using the relationship between the

parameters ψ and the spectral densities functions of fU and fV as fU,ψ and fV,ψ, while omitting

reference to the unknown mappings ρ and τ .

With the decomposition of Wt into the proposed signal and noise components, we can now

employ the X-13A-S gof signal extraction diagnostics to assess the fit of the SARIMA model to the

data Yt. The X-13A-S gof signal extraction diagnostics takes the following form:

Q(f, ψ) =
1

2π

∫ π

−π

gψ(λ)f(λ) dλ

where f is an integrable (possibly random) function on [−π, π], and g is a particular weighting

function g that depends on the parameter ψ of the underlying SARIMA model. Signal extraction

diagnostics (see Maravall [24], Findley, McElroy, and Wills [10], and McElroy [27]) typically in-

troduce a weighting function that is heuristically the squared ratio of signal spectrum fS to data

spectrum fY , which is designed to penalize deviations from the correct model more highly if they

impact the frequencies associated with the signal. Therefore, using the spectral densities for the

signal and the data, along with the noise differencing operator, the weighting function gψ is defined

by

gψ(λ) =
f2U,ψ(λ)|δN (e−iλ)|

2

f2W,ψ(λ)
. (6)

With the definition of the weighting function g and the form Q, we can then consider two different

quantities, Q(I, ψ̂) and Q(f
W,ψ̂

, ψ̂). The first quantity of the two defines the signal extraction

diagnostic, and clearly depends on the definition of the model fU (choice of signal) and δN (B)

(choice of noise differencing operator). When we assume that the stated model is correctly specified

or contains the correct model as a special case, the second quantity is the centering for this diagnostic

and is computable since ψ̂ is the MLE of the SARIMA model. With these two quantities, the

normalization of the difference Q(I, ψ̂)−Q(f
W,ψ̂

, ψ̂), is then given by the quantity

V (ψ) =
1

π

∫ π

−π

r2ψ(λ)dλ− 2b′(ψ)M−1

f (ψ)b(ψ) (7)

where

rψ(λ) = gψ(λ)fW,ψ(λ)

b(ψ) =
1

2π

∫ π

−π

gψ(λ)hψ(λ)dλ

hψ(λ) = ∇ψ log fW,ψ(λ) =
∇ψfW,ψ(λ)

fW,ψ(λ)

Mf (ψ) =
1

2π

∫ π

−π

∇ψfW,ψ(λ)∇′

ψfW,ψ(λ)f
−2

W,ψ(λ)dλ

In the expression for V (ψ), the second term encompasses the contribution of parameter uncer-

tainty, since it involves derivatives of the spectral density fW .
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Since we wish to test model mis-specification from an imposed SARIMA model under the

signal and noise components, we can use natural null hypothesis H0 is that the model is correctly

specified whereas the alternative Ha posits that the model is incorrectly specified. The normalized

test statistic is then defined via

Tn =
√
n
Q(I, ψ̂)−Q(f

W,ψ̂
, ψ̂)

√
V0(ψ̂)

, (8)

which will be asymptotically standard normal under H0. Thus when assessing model gof, it is

important to remember that significant deviations of Tn from zero indicate rejection of the null

hypothesis, namely that the model specification is incorrect. This indicates that our data model is

wrong, and hence the component models are also wrongly specified since they are derived via fixed

algorithms from the data model. However, if the absolute value of the test statistic Tn is close to

zero, namely less than 1.96, then the data model is correctly specified (using a double sided test

with α = .05). The Blakely and McElroy [6] paper gives a large suite of empirical size and power

studies confirming these results.

To gain a better understanding of the signal extraction computation, a feature of uSimX13

allowing one to visualize the spectral density functions of the signal extraction process has been

integrated into the spectral domain functionality. For any given differenced time series data and

corresponding SARIMA model fit, the functions g
ψ̂
(λ)I(λ) and g

ψ̂
(λ)f

W,ψ̂
(λ) are plotted on the

interval [0, π] sampled at 500 points. The difference g
ψ̂
(λ)(I(λ) − f

W,ψ̂
(λ)) is also plotted using

a dotted line. With a correctly specified model for the data W , the integral over [−π, π] of the
difference should be relatively close to zero, with the spectral peaks of both spectral densities

correlating with each other.

To summarize this section, a general outline for computing the gof diagnostic test is given as

follows:

1. Begin with a proposed SARIMA model for Yt. Derive the expression for the spectral density

fW,ψ of the differenced process Wt. This can be plotted in the spectral panel.

2. Establish or specify the stationary components Ut and Vt of the signal and noise, and derive

formulas fU,ψ and δN (z). These can be selected in the signal spectral density panel (see

Figure 2).

3. Estimate the model parameters ψ ∈ Ψ to obtain the estimate ψ̂, and determine the corre-

sponding component parameters τ̂ = τ(ψ̂). This procedure is performed automatically when

a signal has been selected.

4. Compute Q(I, ψ̂)−Q(f
W,ψ̂

, ψ̂) and the variance estimate V0(ψ̂) under the null hypothesis that

the model is correctly specified. Both quantities can be plotted in the spectral signal/noise

panel (see 10 Figure 2).
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5. In the definition of gψ, we insert the function cos(kλ) for k = 0, 1, 2, . . . , 24, which is referred

to as the “lag k diagnostic” for short. The lag can be toggled in the menu additional control

panel found in the additional panel menu above the plotting canvas.

We end this subsection by making a few remarks concerning the computation of the gof di-

agnostic in uSimX13. The current version of the software computes and displays the diagnostics

using the trend Tt, seasonal St, irregular It and trend-irregular Tt + It signal components while a

transitory component Ct, if computed by SEATS, is associated with the irregular component. The

lag k diagnostic for any integer up to 24 for each of these signal decompositions can be computed

as well. While all four diagnostics at any lag can yield different results, with some being outside

threshold of 1.96 and some being close to zero, it was demonstrated through empirical studies in

the paper by Blakely and McElroy [6] that the most consistent of the signal and lag choices were

the seasonal and the trend-irregular at lag 0 and 12 for seasonal data. However, empirical results

for real US Census Bureau economic data, as opposed to simulated data used in the size and power

studies, demonstrated that seasonal, trend, and trend-irregular signal components yielded favorable

results depending on the type of data being analyzed.

4.2.2 Pseudo-True Parameters and Model Fitting

In addition to the standard MLE process for estimating parameter values of a given SARIMA

model, an additional toolkit has been integrated into uSimX13 based on recent research of signal

extraction diagnostics and model misspecification. For given data and a postulated SARIMA

model for the data, a pseudo-true parameter estimator for a given alternative SARIMA model to

the postulated is available. Recall that the pseudo-true values for parameters are the parameter

values that minimize a certain distance to another non-nested fixed model. The distance function

used is the so-called Kullback-Leibler information divergence function [9].

In uSimX13, the key motivation in computing pseudo-true values arrives when one considers the

meaning of a gof signal extraction diagnostic test when the test statistic reveals itself significant.

For a given seasonal time series data set, a proposed SARIMA model, and a signal/noise component

decomposition, then 1) what alternative models should be proposed based on the diagnostics, 2)

can the model selection be based simply on the magnitude of the test statistic. Pseudo-true can

perhaps be used to investigate these two questions related to the gof diagnostic.

To define the pseudo-true values, we first define the Kullback-Leibler information divergence

(or discrepancy). Although not a true metric, the KL divergence measures the distance between

the true model of the data, and a proposed “ansatz” approximate model. It is defined as

D(k, h) =
1

2π

∫ π

−π

(
log k(λ) +

h(λ)

k(λ)

)
dλ,

(see Dahlhaus and Wefelmeyer [9]). With f̃ denoting the true spectral density of the data W , the
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pseudo-true value ψ̃ for a model fψ is, by definition, the minimizer of D(fψ, f̃) over ψ ∈ Ψ, namely

ψ̂ = argminψ∈ΨD(fψ, f̃). Here, we assume the existence and uniqueness of the pseudo-true value

ψ̃ ∈ Ψ and that that
∫
−π,π

f̃dλ is finite. Through the use of Kolmogorov’s formula, we apply

∫ π

−π

log fψ(λ)dλ = log σ2

Letting f̃W denote the true (unknown) spectral density, the pseudo-true values are those parameter

values ψ̃ that minimize the KL distance from F to f̃ , i.e., ψ̃ is the minimizer of D(fW,ψ, f̃) over

ψ ∈ Ψ.

Once the pseudo-true parameter values have been computed from the minimization of the KL

distance function, the power quantity defined as

1

2π

∫ π
−π
g
ψ̃
(λ)(f

W,ψ̃
(λ)− f̃(λ))dλ

√
V0(ψ̃)

. (9)

can be computed. The power quantity 9 is the major determining factor for the power of the gof

signal extraction diagnostic test, being large whenever large discrepancies occur between f
W,ψ̃

and

f̃ at frequencies where the function g
ψ̃

assigns greater weight. This quantity is also sometimes

defined as the efficacy measure, and are labeled as Efficacies in the pseudo-true model panel of

uSimX13.

In the pseudo-true model estimation interface of the uSimX13 software, these power quantities

are computed for a given fixed stipulated SARIMA data generating process for the given data

Yt, and a choice of a non-nested SARIMA model. First, the pseudo-true parameters ψ̃ for the

proposed model fW,ψ are estimated using the KL distance function, then the power quantity 9

is computed for all combinations of signal-noise components (seasonal St, trend Tt, irregular It,

and trend-irregular Tt + It). One can also compute the power quantity at any lag h up to 24 by

multiplying the weighting function g(λ) by cos(hλ). This serves at evaluating the autocovariance

structure of the signal extraction diagnostics at both nonseasonal and seasonal lags, where h = 1 is

typically used for the trend autocovariance, and h = 12 and h = 24 for the seasonal autocovariance.

As a learning tool when performing model comparisons, the power quantity can be used to assess

how close alternative models are in the sense of the KL divergence function to a posited SARIMA

model. Simulating data from a SARIMAmodel with spectral density f̃ , one can compare alternative

models to see how close each alternative model is to the SARIMAmodel. As one changes parameters

in the data generating SARIMA model, the effects of the power quantity and the estimated target

‘pseudo-true’ model can be seen along with the various spectral densities derived from f
W,ψ̃

. Using

a combination of the power quantities with pseudo-true parameter values and the gof diagnostics

evaluated using the pseudo-true values for an automatic model selection process is currently being

investigated using the uSimX13 software.
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5 Sliding Windows and Time Series Data Sweeping

A useful tool in modeling economic time series is the ability to compute models in subsets of the

data and test for the robustness of the signal extraction and forecasting relative to a growing subset

of the data. For instance, for a time series of length 300, one could estimate a model on a shorter

subset of the data, say for the first 200 observations, and then increase the amount of observations,

re-estimate, and then see how the model parameter values change as the number of observations

or data subset increases. One can also see how the signal extractions and forecasts change with

additional data. Ideally, if the model is specified correctly for the data, there should be a very

small variance in the estimated parameters as more data is added to the time series. It signifies

the stability of the model selection. Normally, such an exercise would be tedious to carry out with

X-13ARIMA-SEATS, or any other software such as MATLAB or R as scripts or spec files would

have to be written for each individual re-estimation and then re-plotted. In uSimX13 however, this

task has been rendered an easy one with the addition of a sliding windows tool.

To access the sliding windows tool, the uSimX13 computation engine must be turned on, and

the full length time series data loaded into the module. To turn on the sliding windows, click on

the “Sliding Window Activate” check box in the main uSimX13 menu. Once clicked, the entire

plotting canvas will turn to a dark shade of blue, which indicates the windowed region. To control

the sliding window, place the mouse cursor along one of the edges of the canvas and slowly glide

the mouse with the left-mouse button held down either left or right, depending on which edge of

the plot canvas you are on. Moving to the left or right with the left mouse button held down, the

windowed area will shrink or expand. The model parameters are estimated instantaneously as the

window adjusts and in effect, all the available model statistics, diagnostics, signals, and forecasts are

computed as well. For example, as the window expands or shrinks, the trend, seasonally adjusted

data, and 24-step ahead forecasts can be plotted and viewed in real-time as the window changes.

One can also slide the window to the left or right by placing the mouse anywhere inside the blue-

windowed region, holding down the left mouse button and moving along the time domain. This

way, the window length will remain fixed, but the window center will move along different subsets

of the data. This can be useful for seeing how model parameters can change within regions of data

that exhibit regime changes, namely a sequence in the series that suddenly changes in seasonal or

cyclical structure after a certain time observation. The data can now be modeled in both sections

before and after the regime change occurs in order to compare the estimated parameter values.

5.1 Data Sweep

With the ability to seamlessly capture partitions of the data and model within the given partition

using the sliding window, a natural extension of this mouse-on-canvas utility is employ it somehow

in comparing different model of the time series data. We call this method time series data sweeping
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and it involves selecting an initial window of data from the first observation to the n-th observation

where n is some number much less than the total number of observations N in the data set (say,

one third the amount). The data sweep then computes the sliding window from n as the final

observation all the way to N , in increments of 1. At each addition to the length of the window, the

forecast is computed for up to 24 steps ahead. Of course, since the true time series data is known

in the out-of-sample region of computation, we can compute the forecast error for up to h ≤ 24

steps ahead and sum up these errors as n increases to N . We can do this data sweep for several

models, computing aggregate forecast error over time. The idea is that the best model for the data

will ideally have the smallest forecast error, and thus comparing this forecast error with several

models will identify the model with the best overall forecasting ability.

6 Conclusion

The uses and capabilities of the uSimX13 environment provides a unique time series analysis en-

vironment for both the practitioner in time series and a learning environment for time series com-

putation. Since over half of the numerical routines and computational core comes from X-13A-S,

the uSimX13 software also furnishes an attractive supplement to the X-13A-S software for learning

and understanding the dynamics of time series modeling, model comparison, and goodness-of-fit

diagnostics from SARIMA model estimation.

In this document we summarized most of the features of uSimX13, outlining the computational

core for producing model estimates, forecasts, signal extraction components, and diagnostics. Im-

provements and additional modeling computational tools will consistently be added to uSimX13 to

improve modeling infrastructure, improve access to data files for uploading time series data, and

also make adjustments to the software to suit the needs of practitioners.
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